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On the biochemical and biophysical front…
It has long been established that bone possesses electromechanical properties

and natural biopotentials that are essential in bone remodelling.  These properties

were first observed by Yasuda, Fukada, Bassett, Becker and others, who

observed that repair and adaptive remodelling processes, occurred in response to

mechanical loading, and furthermore, that such responses could be elicited by an

electrical stimulus.1 In light of this, much work has been focused on the application

of exogenous electrical currents, including pulsed electromagnetic fields

(PEMF’s), to emulate the innate physiological and mechanical stresses evoked,

and required in bone formation. Nowadays, researchers have expanded their

visions, and are focusing on elucidating the mechanism of action of these fields,

at the molecular level.    Although several hypotheses have been proposed, the

primary biochemical and biophysical effects, at the molecular, or ionic, level

remain obscure.

Into the biological and biomolecular front…
Endochondral bone formation occurs through a complex series of events,

whereby mesenchymal precursors committed to prechondrogenic cells, undergo a

series of both morphological and biochemical modifications, in response to

extrinsic factors (matrix molecules, growth factors and cytokines), modulated in an

autocrine/paracrine manner, to progress from undifferentiated cells to hypertrophic

chondrocytes or osteoblasts.2 Differentiation therefore, depends on

microenvironmental factors.  Bone marrow stromal cells (BMSC) have the

potential, not only to differentiate into osteoblasts, but into chondrocytes too.3   In

fact, they have been extensively demonstrated to have the potential to

differentiate into specialized connective tissue cells and to give rise to skeletal

tissues.3, 4, 5, 6 Several factors, including growth factors, affect BMSC proliferation

rate and osteogenic potential6, 7, however, it has never been established whether

these same factors affect BMSC chondrogenic potential too.  In a study by

Mastrogiacomo2 and colleagues, 2001, FGF2 (fibroblast factor 2), PDGFbb

(platelet derived growth factor BB), EGF (epidermal growth factor) and IGF

(insulin-like growth factor), were assessed for their affect on BMSC as to affecting



both their osteogenic and chondrogenic potential.  It was found that FGF2 was

the most effective in maintaining BMSC in an immature state as chondro-osteo-

progenitor cells, and that reconstitution of cartilage parallels that of bone.2

And now…
In having established the two scenarios above, it would seem logical to conclude

that chondrocytes and osteoblasts respond to similar, and in some cases,

identical extrinsic factors, and do so in a parallel manner.  If this is so, then one

could possibly hypothesize that both would respond to stimulation by PEMF’s, and

if so, in a parallel fashion (that is, both would respond either positively or

negatively).  The positive effects of PEMF’s stimulation on osteoblasts and

chondrocytes, to form bone and cartilage, respectively, are well established in the

literature.  Of several hypotheses made as to the exact mechanism of action of

PEMF’s, one suggests that they modulate the activity of primary activators,

including hormones (parathyroid hormone, PGE2, TGF-β1), growth factors (TGF-

β1, FGF-2), and cytokines (IL-1), through signal transduction pathways. 1, 8-14 PTH

for example, is known to have direct effects on chondrocyte differentiation, when

exposed to PEMF’s (recurrent bursts, 15.4 Hz, of shorter pulses of an average of

2G). 15 In the absence of PEMF’s, PTH and bone morphogenetic protein (BMP),

affect chondrocyte differentiation and proliferation.16 Not only have PEMF’s been

shown to have a reproducible osteogenic effect in vitro, but have simultaneously

been shown to increase messenger RNA (mRNA) expression of BMP-2 and BMP-

4 by reverse transcription polymerase chain reaction, in cultured rat calvarial

osteoblasts.17 Hiraki and colleagues15 observed an increased expression of

osteoblastic phenotypes, as a result of field-induced differentiation of rabbit

chondrocytes exposed to a clinically effective healing device.

Studies employing different electric field frequencies have demonstrated that bone

cells are dependent on frequency in responding to electric fields18, and that the

most effective frequencies lie in the range 10-30Hz - closely resembling the

frequencies most often observed in living animal bones.14 PST unique energy

parameters - low biological frequencies (10-20Hz), quasi-rectangular waveform,



measured field strengths (intensity) predominantly in the 0.5 to 1.5 mT range (or

5-15 Gauss) - lie within this effective range, which explains its success in the

treatment of chronic pain associated with connective tissue (cartilage, tendon,

ligaments and bone) injury, osteoarthritis (OA or Arthrosis) and also in the

treatment of joint-associated soft tissue injury (traumatic, including soft tissue

injury.  Not only has PST been cited in world renown journals, but was patented in

the US and Europe, on 25 February 2003, patent number US 6,524,233, for the

Electromagnetic Stimulation of Cartilage Tissue.

Meanwhile…
In accordance with the arguments presented here, the use of PST for the

treatment of post-menopausal women with osteoporosis is indeed justified.

Moreover, PST has been medically approved and certified, as a therapeutic

modality for the treatment of Musculoskeletal, and therefore, Connective Tissue,

Disorders, – under which Osteoporosis is classified – and is currently employed in

600 Therapy Centers worldwide.   Indeed, pilot studies on postmenopausal

women with osteoporosis have been met with promising success, as PST appears

to stimulate bone formation – an effect parallel to that observed in cartilage

regeneration.

Osteoporosis is present in most elderly individuals and is a particular problem in

postmenopausal women because it leads to frequent fractures.  Weight bearing

exercises and increased calcium intake can help, and while several medications

are available, improvement is not dramatic and adverse side effects limit their

use.  In early controlled clinical studies, between 1978 and 1980, of over 100

women, between the ages of 55 and 75 years, with evidence of moderate to

advanced osteoporosis, it was observed that PST resulted in a statistically

significant increase in mean bone density, of greater than 25 percent, in a

randomly selected sample group.

Currently, further studies on postmenopausal women with Osteoporosis, are

underway.  Corroborating data at the Osteoporose Diagnostik- und



Therapiezentrum München, clearly demonstrate a beneficial and significant trend

in improvement, as evidenced by the increase in volumetric bone mineral density

(vBMD), after treatment with PST. In addition, patients have reported an

associated decrease in pain.  The benefits of PST in this regard, are not

surprising, owing to its established and documented success in pain

management.19, 20, 21, 22
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